Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 18(6): 1892-1911, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35080745

RESUMO

Wound healing is a serious obstacle due to the complexity of evaluation and management. While novel approaches to promoting chronic wound healing are of critical interest at the moment, several studies have demonstrated that combination therapy is critical for the treatment of a variety of diseases, particularly chronic wounds. Among the various approaches that have been proposed for wound care, regenerative medicine-based methods have garnered the most attention. As is well known, regenerative medicine's three primary tools are gene/cell therapy, biomaterials, and tissue engineering. Multifunctional biomaterials composed of synthetic and natural components are highly advantageous for exosome carriers, which utilizing them is an exciting wound healing method. Recently, stem cell-secreted exosomes and certain biomaterials have been identified as critical components of the wound healing process, and their combination therapy appears to produce significant results. This paper presents a review of literature and perspectives on the use of stem cell-derived exosomes and biomaterials in wound healing, particularly chronic wounds, and discusses the possibility of future clinical applications.


Assuntos
Exossomos , Materiais Biocompatíveis/farmacologia , Células-Tronco , Engenharia Tecidual , Cicatrização
2.
Trends Analyt Chem ; 143: 116342, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34602681

RESUMO

There have been many efforts to synthesize advanced materials that are capable of real-time specific recognition of a molecular target, and allow the quantification of a variety of biomolecules. Scaffold materials have a porous structure, with a high surface area and their intrinsic nanocavities can accommodate cells and macromolecules. The three-dimensional structure (3D) of scaffolds serves not only as a fibrous structure for cell adhesion and growth in tissue engineering, but can also provide the controlled release of drugs and other molecules for biomedical applications. There has been a limited number of reports on the use of scaffold materials in biomedical sensing applications. This review highlights the potential of scaffold materials in the improvement of sensing platforms and summarizes the progress in the application of novel scaffold-based materials as sensor, and discusses their advantages and limitations. Furthermore, the influence of the scaffold materials on the monitoring of infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and bacterial infections, was reviewed.

3.
Vet Res Forum ; 12(4): 481-485, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35529825

RESUMO

Chronic myelogenous leukemia (CML) is one of prevalent cancer worldwide. In spite of various designed drugs, chemoresistance remains the main obstacle in cancer cure. Therefore, developing novel strategy for treatment of CML is an urgent need. Fragaceatoxin C (FraC) is novel protein toxin from a sea anemone called actinia fragacea with great impacts against cells by pore formation and disturbing cell membrane integrity. The aim of this study was evaluation of FraC toxin toxicity against K562. The bacteria cells harboring expression||||||| vector of FraC were induced by IPTG and purified by Ni2+-NTA sepharose affinity chromatography. Then, purified toxin activity was evaluated using RBC hemolytic test. Eventually, evaluation of FraC cytotoxicity and apoptosis were performed using MTT and flow cytometery assays, respectively. Our results revealed that FraC toxin decreased K562 cells viability in a dose- and time-dependent manner with a whole destroy of cancer cells at 35.00 µg mL-1 after 72 hr. Furthermore, flow cytometery analysis indicated that FraC toxin enhanced necrosis along with apoptosis in K562 cells in a dose dependent manner. We speculated that FraC toxin could be considered as a novel candidate for cancer cell researches and treatments provided that it should be turned into a specific agent by engineering and directing to cancer cell membrane.

4.
Biomed Pharmacother ; 132: 110807, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33068939

RESUMO

Colorectal cancer (CRC) is a stem cell-based disease. PIK3CA/KRAS-mutant CRC stem cells (CRCSCs) display high self-renewal, metastatic properties, high activity of PI3K and KRAS signaling pathways with chemoresistant phenotypes. Recently, RGD peptide (containing Arg-Gly-Asp motif)-based therapy of solid tumor cells has attracted much attention. However, little is known whether this method can target self-renewal capacity, key effectors of PI3K and KRAS signaling pathways such as metastasis-driver gene CXCR4 and stem cell regulatory genes with caspase-3 reactivation in CRCSCs overexpressing RGD-dependent integrins. The sea anemone Actinia fragacea produces a water-soluble RGD-peptide fragacea toxin C (FraC) suggesting the possible activity of FraC against PIK3CA/KRAS-mutant CRCSCs. Recombinant FraC was expressed via pET-28a(+)-FraC in E. coli and purified through affinity chromatography followed by performing SDS-PAGE and hemolytic activity assay. Next, PIK3CA/KRAS-mutant HCT-116 cells that serve as an attractive model for CRCSCs were treated with FraC. Thereafter, cell numbers, viability, proliferation, LDH activity, cytotoxicity index, CXCR4 and pluripotency network genes expression, self-renewal capacity, caspase-3 activity with apoptosis were evaluated. Caspase-1, -2, -3,…, -9 sequences were analyzed for RGD-binding motifs. FraC sequence and structure were also evaluated by bioinformatics software. FraC altered cellular morphology to round shapes and disrupted cell connections. 48 h post-treatment with 0.056- to 7.2 µM FraC resulted in 12 %-99 % and 8 %-97.6 % decreases in cell numbers and viabilities respectively and increased LDH activity by 0.2 %-66.7 % in a dose-dependent manner. The results of the cytotoxicity index showed that FraC induces significant toxicity on HCT-116 cells compared to PBMCs and Huvec cells. FraC dramatically decreased the expression of CXCR4 and pluripotency network genes Bmi-1, Sox-2, Oct-4 and Nanog followed by remarkable decreases in self-renewal capacity ranged from 91- to 0 colonies per well for 0.056- to 3.6 µM FraC after 2 weeks. Caspase-3 was found to contain an RGD-binding motif and its activity increased with increasing FraC concentrations followed by apoptosis induction. Potential RGD-binding motifs for FraC were also found in caspase-1, -7, -8 and -9. Unique advantages of FraC peptide, such as low molecular weight, water solubility, high sensitivity of CRC stem-like cells with more selective toxicity to this compound, targeting tumor cell membrane and self-renewal capacity along with the modulation of CXCR4 and stem cell regulatory genes as upstream and downstream effectors of undruggable PI3K and KRAS signaling pathways may open up avenues for FraC peptide-based therapy of PIK3CA/KRAS-mutant CRCSCs with lower toxicity on healthy cells.


Assuntos
Venenos de Cnidários/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Oligopeptídeos/farmacologia , Anêmonas-do-Mar/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/genética , Venenos de Cnidários/química , Venenos de Cnidários/isolamento & purificação , Neoplasias Colorretais/genética , Genes Reguladores/genética , Células HCT116 , Humanos , Mutação , Células-Tronco Neoplásicas/citologia , Oligopeptídeos/química , Oligopeptídeos/isolamento & purificação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos , Solubilidade
5.
Chem Biol Drug Des ; 95(2): 215-223, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31512406

RESUMO

Ovarian cancer is considered as one of the most lethal gynecological cancers, and cisplatin-based therapy has an important role as the first-line option for chemotherapy. Resistance to chemotherapy is the main obstacle against successful cancer chemotherapy with cisplatin. Therefore, identifying potent compositions and molecules with fewer side-effects is a big challenge to overcome cisplatin resistance. In this study, we investigated the possible mechanism and potency of sanguinarine, a plant-derived alkaloid, in human cisplatin-resistant ovarian cancer (A2780/R) cells. The effect of sanguinarine on cytotoxicity of cisplatin was determined by MTT assay. Apoptosis-inducing effect of sanguinarine alone and in combination with cisplatin was evaluated by annexin V/PI assay and DAPI staining. Intracellular glutathione (GSH) content was quantitated using GSH assay kit after treatment with sanguinarine. Results indicated that sanguinarine enhances the sensitivity of A2780/R cells to cisplatin. Apoptosis-inducing effect of cisplatin was also enhanced when combined with sanguinarine. Furthermore, sanguinarine reduced intracellular GSH content in a dose-dependent but not time-dependent manner. These findings suggest that sanguinarine could reverse cisplatin resistance in A2780/R cells through GSH reduction. Therefore, sanguinarine can be used as one of the potent adjuvants for ovarian cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutationa/metabolismo , Isoquinolinas/farmacologia , Neoplasias Ovarianas/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Ovarianas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...